SHIVALIK SR. SEC. SCHOOL, BHARTHARI ROAD, BEHROR
 CLASS--XI
 UNIT:- SEQUENCE AND SERIES \rightarrow AP, GP \& HP
 SUBJECT- Mathematics (Ramesh Suthar Sir)

$>$ Sequence :- A sequence is a function whose domain is the set N of natural numbers.
\& Its denoted by $<a_{n}>$ or $\left\{a_{n}\right\}$.
\& Fibonacci sequence is given by $a_{1}=1, a_{2}=1$ and $a_{n+1}=a_{n+} a_{n-1} ; n \geq 2$. The term of this sequence are $1,1,2,3,5,8$ \qquad .
$>$ Series :- If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots \ldots \ldots \ldots ., a_{n}, \ldots \ldots \ldots \ldots \ldots$ is a sequence, then the expression

$$
a_{1}+a_{2}+a_{3}+a_{4}+\ldots \ldots \ldots \ldots . a_{n}+\ldots \ldots \ldots \ldots . . \text { is a series. }
$$

$>$ Progressions :- Those sequence whose terms follow certain patterns are called progressions.
$>$ Arithmetic Progression :- A sequence is called an arithmetic progression if the difference of a term is always same.
i.e. \quad Common difference $(d)=a_{n+1}-a_{n}$
$>$ General form of an A.P. :-Let a be the first term and d be the common difference of A.P., then general form is :-

$$
\begin{aligned}
& \quad a, a+d, a+2 d, a+3 d, \ldots \ldots \ldots \ldots, a+(n-1) d, \ldots \ldots \ldots . \\
& \therefore d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\ldots \ldots \ldots \ldots \ldots=a_{n}-a_{n-1}=a_{n+1}-a_{n}=
\end{aligned}
$$

\qquad \& nth term of an A.P.

$$
a_{n}=a+(n-1) d \quad, \quad L=a+(n-1) d
$$

\Rightarrow nth term from the end

$$
\mathrm{a}_{\mathrm{n}}=\mathrm{L}-(\mathrm{n}-1) \mathrm{d}
$$

\Rightarrow nth term from the end

$$
a_{m-n+1}=a+(m-n) d
$$

$>$ Terms of An A.P. :-

No. Of terms

Terms

$$
\begin{aligned}
& a-d, a+d \\
& a-d, a, a+d \\
& a-3 d, a-d, a+d, a+3 d \\
& a-2 d, a-d, a, a+d, a+2 d \\
& a-5 d, a-3 d, a-d, a+d, a+3 d, a+5 d
\end{aligned}
$$

$>$ Sum to n terms on A.P. :-

The sum of n terms of an A.P. with first term 'a' and common difference ' d ' is given by.
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[\mathrm{a}+\{\mathrm{a}+(\mathrm{n}-1) \mathrm{d}\}]$
$\Rightarrow \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}(\mathrm{a}+\mathrm{L})$

* If the sum S_{n} of n terms of a sequence is given, then nth term $a_{n}=S_{n}-S_{n-1}$
* Three numbers a, b, c are in A.P. iff $2 b=a+c$.

$>$ Arithmetic Mean :-

(i) If A is an arithmetic mean between $\mathrm{a} \& \mathrm{~b}$. Then $\mathrm{a}, \mathrm{A}, \mathrm{b}$ in A.P.

So, $A=\frac{a+b}{2}$
(ii) If $A_{1}, A_{2}, A_{3}, \ldots \ldots \ldots \ldots \ldots \ldots$........... An be n arithmetic means between two quantities a and b . Then $\mathrm{a}, \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \ldots \ldots, \mathrm{A}_{\mathrm{n}-1}, \mathrm{~A}_{\mathrm{n}}, \mathrm{b}$ in A.P.

$$
\begin{aligned}
& \text { Then } A_{n}=a+\left[\frac{n(b-a)}{n+1}\right] \\
& \text { Here :- } d=\frac{(b-a)}{(n+1)}
\end{aligned}
$$

Geometric progression :-

A sequence a1, a2, a3, \qquad an, \qquad is called a geometric progression if $\frac{a_{n+1}}{a_{n}}=$ constant, $\forall \mathrm{n} \in \mathrm{N}$.

General form of a G.P. :- If a be the first term and r be the common ratio of G.P. , is :-
a, ar, $a r^{2}, a r^{3}$, \qquad $\mathrm{ar}^{\mathrm{n}-1}$
\star nth term of G.P. an $=a r^{\mathrm{n}-1}$.

* last term of G.P. L $=a r^{n-1}$.
\& Common ratio $=\frac{a_{n+1}}{a_{n}}=\mathrm{r}=\frac{a_{2}}{a_{1}}=\frac{a_{3}}{a_{2}}=$ \qquad

Terms of a G.P. :-

No. Of terms

Terms

2

$$
\frac{\mathrm{a}}{\mathrm{r}}, \mathrm{ar}
$$

3

4
5 $\frac{\mathrm{a}}{\mathrm{r}}$, a, ar $\frac{\mathrm{a}}{\mathrm{r}^{3}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{ar}, \mathrm{ar}^{3}$ $\frac{\mathrm{a}}{\mathrm{r}^{2}}, \frac{\mathrm{a}}{\mathrm{r}}, \mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}$

6

$$
\frac{a}{r^{5}}, \frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}, a r^{5}
$$

Sum of n terms of a G.P. :-The sum of n terms of a G.P. with first term ' a ' and common ratio ' r ' is given by.

$$
\operatorname{Sn}=\frac{a\left(1-r^{\mathrm{n}}\right)}{(r-1)} ; r>1
$$

$$
\mathrm{Sn}=\frac{\mathrm{a}\left(1-\mathrm{r}^{\mathrm{n}}\right)}{(\mathrm{r}-1)} ; \mathrm{r}<1
$$

$>$ Sum of an infinite G.P. :-

The sum of an infinite G.P. with first term 'a' and common ratio ' r ' is given by $\mathrm{S}_{\infty}=\frac{\mathrm{a}}{1-\mathrm{r}} ;-1<\mathrm{r}<1,(|\mathrm{r}|<1)$

Geometric Mean :-

(i) If G be a geometric mean between $a \& b$, then

$$
\begin{aligned}
& a, G, b \text { in G.P. } \\
\Rightarrow & G^{2}=a b \\
\Rightarrow & G=\sqrt{a b}
\end{aligned}
$$

(ii) If $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots \ldots \ldots, \mathrm{G}_{\mathrm{n}}$ be n geometric mean between $\mathrm{a} \& \mathrm{~b}$, then

$$
\mathrm{a}, \mathrm{G}_{1}, \mathrm{G}_{2}, \ldots \ldots \ldots \ldots . ., \mathrm{G}_{\mathrm{n}}, \mathrm{~b} \text { in G.P. }
$$

Common Ratio $\mathrm{r}=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}$
$\mathrm{G}_{\mathrm{n}}=\operatorname{ar}^{\mathrm{n}}=\mathrm{a}\left[\left(\frac{b}{a}\right)^{\frac{1}{n+1}}\right]^{\mathrm{n}}$
$\mathrm{G}_{\mathrm{n}}=\mathrm{a}\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$
\& If A and G are respectively arithmetic and geometric means between two positive number a and b , then $\mathrm{A}>\mathrm{G}$

* If A and G be the arithmetic mean and geometric mean between two positive numbers, then the numbers are $A \pm \sqrt{A^{2}+G^{2}}$

Arithmetic Geometric sequence :- $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots \ldots \ldots, a_{n}, \ldots \ldots \ldots$ and b_{1}, b_{2}, b_{3},
$\mathrm{b}_{\mathrm{n}}, \ldots \ldots$. is a G.P., then the sequence $a_{1} b_{1}, a_{2} b_{2}, a_{3} b_{3}$ \qquad $a_{n} b_{n}$, \qquad is said to be an arithmetic - geometric sequence.
$a,(a+d) r,(a+2 d) r^{2},(a+3 d) r^{3}$, \qquad .
\& nth term of AP - GP sequence $[a+(n-1) d] r^{n-1}$

* Sum of n terms of an arithmetic geometric sequence

$$
\mathrm{S}_{\mathrm{n}}= \begin{cases}\frac{a}{(1-r)}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{[a+(n-1) d]^{n}}{(1-r)} & ; r \neq 1 \\ \frac{n}{2}[2 a+(n-1) d] & ; r=1\end{cases}
$$

\& Sum of an infinite arithmetic - geometric sequence

$$
\mathrm{S}_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}
$$

Sum of first n natural numbers :-

$\sum \mathrm{n}=1+2+3+\ldots \ldots \ldots . .+\mathrm{n}=\frac{n(n+1)}{2}$
$>$ Sum of the squares of first n natural numbers :-
$\sum \mathrm{n}^{2}=1^{2}+2^{2}+3^{2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6}$
$>$ Sum of the cubes of first n natural numbers :-
$\sum \mathrm{n}^{3}=1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots \ldots \ldots+\mathrm{n}^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$
HARMONIC PROGRESSION:- A sequence $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots \ldots . . a_{n}, \ldots \ldots \ldots \ldots .$. of non zero
numbers is called a Harmonic progression if sequence.

$$
\begin{aligned}
& \frac{1}{a_{1}}, \frac{1}{a_{2}}, \frac{1}{a_{3}}, \ldots \ldots \ldots \ldots \ldots, \frac{1}{a_{n}}, \ldots \ldots \ldots \ldots . . \text { is on A.P. } \\
& \therefore \mathrm{d}=\frac{1}{a_{2}}-\frac{1}{a_{1}} ; \quad \mathrm{a}_{\mathrm{n}}=\frac{1}{a+(n-1) d} ; \quad \mathrm{a}=\frac{1}{a_{1}}
\end{aligned}
$$

* Harmonic mean between two number a \& b. $\mathrm{H}=\frac{2 a b}{\mathrm{a}+\mathrm{b}}$
\& nth Harmonic means between $\mathrm{a} \& \mathrm{~b}$.

$$
\begin{aligned}
& \mathrm{a}, \mathrm{H}_{1}, \mathrm{H}_{2}, \ldots \ldots \ldots \ldots . . \mathrm{H}_{\mathrm{n}}, \mathrm{~b} \text { in H.P. } \\
\Rightarrow & \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{H}_{1}}, \frac{1}{\mathrm{H}_{2}}, \ldots \ldots \ldots \ldots \ldots, \frac{1}{\mathrm{H}_{\mathrm{n}}}, \mathrm{~b} \text { in H.P. } \\
\Rightarrow & \mathrm{d}=\frac{a-b}{(\mathrm{n}+\mathrm{a}) \mathrm{ab}} \\
\Rightarrow & \frac{1}{\mathrm{H}_{\mathrm{n}}}=\frac{1}{\mathrm{a}}+\mathrm{nd}=\frac{1}{a}+\frac{n(a-b)}{(\mathrm{n}+1) \mathrm{ab}} \\
\Rightarrow & \frac{1}{\mathrm{H}_{\mathrm{n}}}=\frac{\mathrm{bn}+\mathrm{b}+\mathrm{an}-\mathrm{bn}}{\mathrm{ab}(\mathrm{n}+1)}=\frac{\mathrm{b}+\mathrm{an}}{\mathrm{ab}(\mathrm{n}+1)} \\
\Rightarrow & \mathrm{H}_{\mathrm{n}}=\frac{\mathrm{ab}(\mathrm{n}+1)}{\mathrm{an}+\mathrm{b}} \\
\Rightarrow & \mathrm{~A} \geq \mathrm{G} \geq \mathrm{H} \\
\Rightarrow & \mathrm{AM} \geq \mathrm{GM} \geq \mathrm{HM} \\
\& & \text { If } \mathrm{A}, \mathrm{G}, \mathrm{H} \text { in G.P., then } \mathrm{G}^{2}=\mathrm{AH}
\end{aligned}
$$

