SHIVALIK SR. SEC. SCHOOL, BHARTHARI ROAD, BEHROR **CLASS--XI** UNIT:- SEQUENCE AND SERIES \rightarrow AP, GP & HP **SUBJECT-** Mathematics (Ramesh Suthar Sir) Sequence :- A sequence is a function whose domain is the set N of natural numbers. • Its denoted by $\langle a_n \rangle$ or $\{a_n\}$. Fibonacci sequence is given by $a_1 = 1$, $a_2 = 1$ and $a_{n+1} = a_{n+1}$; $n \ge 2$. The term of this sequence are 1, 1, 2, 3, 5, 8 \blacktriangleright Series :- If $a_1, a_2, a_3, a_4, a_5, \dots, a_n, \dots$ is a sequence, then the expression $a_1 + a_2 + a_3 + a_4 + \dots + a_n + \dots$ is a series. **Progressions :-** Those sequence whose terms follow certain patterns are called progressions. > Arithmetic Progression :- A sequence is called an arithmetic progression if the difference of a term is always same. i.e. Common difference (d) = $a_{n+1} - a_n$ **General form of an A.P.** :-Let a be the first term and d be the common difference of A.P., then general form is :a, a + d, a + 2d, a + 3d,, a + (n - 1)d, \therefore d = a₂ - a₁ = a₃ - a₂ = a₄ - a₃ = = a_n - a_{n-1} = a_{n+1} - a_n = \diamond nth term of an A.P. $a_n = a + (n-1)d$, L = a + (n-1)d \Rightarrow nth term from the end $a_n = L - (n-1)d$ \Rightarrow nth term from the end $a_{m-n+1} = a + (m-n)d$ Terms of An A.P. :-No. Of terms Terms 2 a-d, a+d3 a - d, a, a + da - 3d, a - d, a + d, a + 3d4

a - 2d, a - d, a, a + d, a + 2da - 5d, a - 3d, a - d, a + d, a + 3d, a + 5d

Sum to n terms on A.P. :-

5

6

The sum of n terms of an A.P. with first term 'a' and common difference 'd' is given by.

 $S_n = \frac{n}{2} [2a + (n-1)d]$

- $\Rightarrow S_n = \frac{n}{2} [a + \{a + (n-1)d\}]$
- \Rightarrow S_n = $\frac{n}{2}$ (a + L)
- ♦ If the sum S_n of n terms of a sequence is given, then nth term $a_n = S_n S_{n-1}$
- ***** Three numbers a, b, c are in A.P. iff 2b = a + c.

Arithmetic Mean :-

(i) If A is an arithmetic mean between a & b. Then a, A, b in A.P.

So,
$$A = \frac{a+b}{2}$$

- (ii) If A_1, A_2, A_3, \dots , An be n arithmetic means between two quantities
 - a and b. Then a, A_1 , A_2 ,, A_{n-1} , A_n , b in A.P.

Then
$$A_n = a + \left[\frac{n (b-a)}{n+1}\right]$$

Here :- $d = \frac{(b-a)}{(n+1)}$

- Geometric progression :-
 - A sequence a1, a2, a3,, an, is called a geometric progression if $\frac{a_{n+1}}{a_n} = \text{constant}, \forall n \in \mathbb{N}.$
- **General form of a G.P.** :- If a be the first term and r be the common ratio of G.P., is :-

a, ar, ar², ar³,, arⁿ⁻¹,

- * nth term of G.P. an = ar^{n-1} .
- ***** last term of G.P. $L = ar^{n-1}$.
- ★ Common ratio = $\frac{a_{n+1}}{a_n} = r = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \dots$

Terms of a G.P. :-

No. Of terms	Terms	
2	$\frac{a}{r}$, ar	
3	$\frac{a}{r}$, a, ar	
4	$\frac{a}{r^3}, \frac{a}{r}, ar, ar^3$	
5	$\frac{a}{r^2}$, $\frac{a}{r}$, a, ar, ar^2	
б	$\frac{a}{r^5}, \frac{a}{r^3}, \frac{a}{r}, ar, ar^3, ar^5$	

Sum of n terms of a G.P. :-The sum of n terms of a G.P. with first term 'a' and common ratio 'r' is given by.

$$Sn = \frac{a(1-r^n)}{(r-1)}; r > 1$$

Sn =
$$\frac{a(1-r^n)}{(r-1)}$$
; r < 1

Sum of an infinite G.P. :-

The sum of an infinite G.P. with first term 'a' and common ratio 'r' is given by

$$S_{\infty} = \frac{a}{1-r}$$
; $-1 < r < 1$, $(|r| < 1)$

Geometric Mean :-

(i) If G be a geometric mean between a & b, then

$$\Rightarrow$$
 G⁻ = ab

- \Rightarrow G = \sqrt{ab}
- (ii) If G_1, G_2, \dots, G_n be n geometric mean between a & b, then

a, G₁, G₂, ..., G_n, b in G.P.
Common Ratio
$$r = \left(\frac{b}{a}\right)^{\frac{1}{n+1}}$$

G_n = arⁿ = a $\left[\left(\frac{b}{a}\right)^{\frac{1}{n+1}}\right]^n$
G_n = a $\left(\frac{b}{a}\right)^{\frac{n}{n+1}}$

- If A and G are respectively arithmetic and geometric means between two positive number a and b, then A > G
- ✤ If A and G be the arithmetic mean and geometric mean between two positive numbers, then the numbers are A $\pm \sqrt{A^2 + G^2}$
- Arithmetic Geometric sequence :- a₁, a₂, a₃,, a_n, and b₁, b₂, b₃,, b_n, is a G.P., then the sequence a₁b₁, a₂b₂, a₃b₃, a_nb_n, is said to be an arithmetic geometric sequence.

a, (a+d)r, $(a+2d)r^2$, $(a+3d)r^3$,

- * nth term of AP GP sequence $[a + (n-1)d] r^{n-1}$
- Sum of n terms of an arithmetic geometric sequence

$$S_{n} = \begin{cases} \frac{a}{(1-r)} + \frac{dr(1-r^{n-1})}{(1-r)^{2}} - \frac{[a+(n-1)d]^{r^{n}}}{(1-r)}; r \neq 1\\ \frac{n}{2} [2a+(n-1)d]; r = 1 \end{cases}$$

★ Sum of an infinite arithmetic – geometric sequence

$$\mathbf{S}_{\infty} = \frac{a}{1-r} + \frac{dr}{(1-r)^2}$$

Sum of first n natural numbers :-

 $\sum n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

- Sum of the squares of first n natural numbers :- $\sum n^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$
- Sum of the cubes of first n natural numbers :- $\sum n^3 = 1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$
- $\succ \text{HARMONIC PROGRESSION}:- A sequence a_1, a_2, a_3, \dots, a_n, \dots, of non zero$

P.

numbers is called a Harmonic progression if sequence.

$$\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots, \frac{1}{a_n}, \dots, \frac{1}{a_n}, \dots, \text{ is on A.F}$$
$$\therefore d = \frac{1}{a_2} - \frac{1}{a_1}; \quad a_n = \frac{1}{a + (n-1)d}; \quad a = \frac{1}{a_1}$$

• Harmonic mean between two number a & b. H = $\frac{2ab}{a+b}$

nth Harmonic means between a & b.

a, H₁, H₂, H_n, b in H.P.

$$\Rightarrow \frac{1}{a}, \frac{1}{H_1}, \frac{1}{H_2}, \dots, \frac{1}{H_n}, b in H$$

$$\Rightarrow d = \frac{a-b}{(n+a)ab}$$

$$\Rightarrow \frac{1}{H_n} = \frac{1}{a} + nd = \frac{1}{a} + \frac{n(a-b)}{(n+1)ab}$$

$$\Rightarrow \frac{1}{H_n} = \frac{bn+b+an-bn}{ab(n+1)} = \frac{b+an}{ab(n+1)}$$

$$\Rightarrow H_n = \frac{ab(n+1)}{an+b}$$

$$\Rightarrow A > G > H$$

$$\Rightarrow$$
 AM > GM > HM

• If A, G, H in G.P., then $G^2 = AH$